
Unified Parallel C on 
BlueGene/L

Rajkishore Barik
Calin Cascaval

Siddhartha Chatterjee (sc@us.ibm.com)
Maria Eleftheriou

Manish P. Kurhekar
Pradeep Verma

IBM Research (India, Yorktown)



14 August 2002 BG/L Tahoe workshop 2

Outline of Talk

n Unified Parallel C (UPC): How, What, 
Why?

n IBM Research’s involvement with UPC 
implementation



14 August 2002 BG/L Tahoe workshop 3

Unified Parallel C
History

n Start with C (ISO/IEC 9899:1999 standard)
n Add parallelism

n Unify experiences from Split-C, AC, PCP, etc.

n Initial tech report (IDA, LLNL, UCB) May 1999
n First implementations on Cray T3D/E (gcc based)
n Integrate developer and user experience

n Government: ARSC, IDA CSC, LBNL, LLNL, NSA, US DOD
n Academia: GWU, MTU, UCB
n Vendors: Compaq, CSC, Cray, Etnus, HP, IBM, Intrepid 

Technologies, SGI, Sun Microsystems



14 August 2002 BG/L Tahoe workshop 4

Parallel Programming Models

n Programmer’s view of data and control
n Not the same as parallel architectures
n Enables architecture-neutral programming if 

model can be mapped efficiently on real machines

n Examples
n Message passing model (MPI)
n Data-parallel model (HPF)
n Shared memory model (OpenMP)
n Distributed shared memory model (UPC)
n Hybrid models (OpenMP + MPI)



14 August 2002 BG/L Tahoe workshop 5

Overview of UPC
Distributed Shared Memory Model

Each thread can access data resident in:
vLocal part of address space
vShared part of address space with affinity to that thread
vShared parts of address space with affinity to other threads



14 August 2002 BG/L Tahoe workshop 6

Programming Example
Vector Addition in C

#include <upc_relaxed.h>
#define N 1000

shared double v1[N], v2[N], v3[N];

void main() {
forall(int i=0; i < N; i++; i)

v3[i] = v1[i] + v2[i];
} 



14 August 2002 BG/L Tahoe workshop 7

Programming Example
Vector Addition in UPC

#include <upc_relaxed.h>
#define N 1000

shared double v1[N], v2[N], v3[N];

void main() {
forall(int i=0; i < N; i++; i)

v3[i] = v1[i] + v2[i];
} 



14 August 2002 BG/L Tahoe workshop 8

UPC Features
Data

n Shared variables
n shared T x;
n Scalars, records, arrays (of …), pointers (to …)
n Accessible to all UPC threads

n Affinity
n shared[10] float x[100];
n Can be dynamic

n Consistency
n [strict | relaxed] shared int x;
n Governs cross-thread observability of shared variable update

n Self knowledge
n THREADS, MYTHREAD



14 August 2002 BG/L Tahoe workshop 9

UPC Features
Control

n Parallel iteration
n upc_forall(j = 0; j < n; j++; j)
n Adds scheduling clause to normal C for-

statement
n Various possibilities
n Implications for nested foralls

n Global synchronization
n Barrier, wait/notify, fence



14 August 2002 BG/L Tahoe workshop 10

UPC Features
Libraries

n Current
n General utilities
n Dynamic memory allocation
n Locks
n Shared string handling

n Under development
n Collective communication operations
n I/O



14 August 2002 BG/L Tahoe workshop 11

Assessment of UPC

n Pros
n Extension of familiar 

C syntax
n Locality exploitation: 

blocking, affinity
n Implementations on 

several platforms
n Incremental code 

parallelization

n Cons
n Semantic extensions 

sometimes 
unintuitive

n Affinity mechanism is 
limited

n Implementations are 
limited

n Small user 
community

http://www.gwu.edu/~upc



14 August 2002 BG/L Tahoe workshop 12

Our UPC Activity
Design Strategy

n Working with XL code base
n Intent: Code changes merged back

n Changes required to normal XL compiler
n Front end modification to handle new syntax
n New pass to convert UPC semantics to C 

semantics + RTS calls
n Linker modifications to handle memory segments

n RTS design
n Trying to avoid scalability limitations of other 

implementations


